Table R-8: 1995 Key Source Tier 1 Analysis - Level Assessment | | Direct | Base Year
Estimate | Current Year | T - 1 | G 14 | | |---|----------------------------|-----------------------------|-----------------------------------|------------|---------------------|--| | IPCC Source Categories | Greenhouse
Gas | (Tg CO ₂
Eq.) | Estimate (Tg CO ₂ Eq.) | Assessment | Cumulative
Total | | | CO ₂ Emissions from Stationary Combustion - Coal | CO ₂ | 1,697.29 | 1,805.85 | 0.28 | 0.28 | | | Mobile Combustion: Road & Other | CO_2 | 1,244.98 | 1,354.70 | 0.21 | 0.49 | | | CO ₂ Emissions from Stationary Combustion - Gas | CO_2 | 976.63 | 1,134.43 | 0.17 | 0.66 | | | CO ₂ Emissions from Stationary Combustion - Oil | CO_2 | 669.99 | 623.10 | 0.10 | 0.75 | | | CH ₄ Emissions from Solid Waste Disposal Sites | CH ₄ | 212.07 | 216.09 | 0.03 | 0.79 | | | Direct N ₂ O Emissions from Agricultural Soils | N ₂ O | 193.71 | 205.09 | 0.03 | 0.82 | | | Mobile Combustion: Aviation | CO_2 | 176.88 | 171.45 | 0.03 | 0.85 | | | Fugitive Emissions from Natural Gas Operations | CH ₄ | 122.01 | 127.24 | 0.02 | 0.87 | | | CH ₄ Emissions from Enteric Fermentation in Domest | | 117.85 | 122.96 | 0.02 | 0.88 | | | Livestock | | 117.00 | 122.70 | 0.02 | 0.00 | | | Indirect N ₂ O Emissions from Nitrogen Used | in N ₂ O | 73.83 | 78.97 | 0.01 | 0.90 | | | Agriculture | 1111720 | 73.03 | 70.77 | 0.01 | 0.70 | | | CO ₂ Emissions from Iron and Steel Production | CO_2 | 85.41 | 74.36 | 0.01 | 0.91 | | | Fugitive Emissions from Coal Mining and Handling | CH ₄ | 87.12 | 73.54 | 0.01 | 0.92 | | | Mobile Combustion: Road & Other | N_2O | 48.56 | 58.80 | 0.01 | 0.93 | | | Mobile Combustion: Marine | $\widetilde{\text{CO}}_2$ | 48.60 | 51.66 | 0.01 | 0.94 | | | CO ₂ Emissions from Cement Production | CO_2 | 33.28 | 36.85 | 0.01 | 0.94 | | | CH ₄ Emissions from Manure Management | CH ₄ | 31.28 | 36.19 | 0.01 | 0.95 | | | SF ₆ Emissions from Electrical Equipment | SF ₆ | 32.10 | 27.48 | < 0.01 | 0.95 | | | HFC-23 Emissions from HCFC-22 Manufacture | HFCs | 34.98 | 27.03 | < 0.01 | 0.96 | | | CH ₄ Emissions from Wastewater Handling | CH_4 | 24.08 | 26.60 | < 0.01 | 0.96 | | | Fugitive Emissions from Oil Operations | CH ₄ | 27.49 | 24.21 | < 0.01 | 0.96 | | | Emissions from Substitutes for Ozone Depletic | • | 0.94 | 21.69 | < 0.01 | 0.97 | | | Substances | C | | | | | | | CO ₂ Emissions from Ammonia Production and Uro | ea CO ₂ | 19.31 | 20.45 | < 0.01 | 0.97 | | | Application | 2 | | | | | | | N ₂ O Emissions from Nitric Acid Production | N_2O | 17.85 | 19.89 | < 0.01 | 0.97 | | | CO ₂ Emissions from Waste Incineration | $\overline{\mathrm{CO}_2}$ | 14.07 | 18.47 | < 0.01 | 0.98 | | | N ₂ O Emissions from Adipic Acid Production | $N_2\tilde{O}$ | 15.20 | 17.21 | < 0.01 | 0.98 | | | N ₂ O Emissions from Manure Management | N_2O | 16.18 | 16.55 | < 0.01 | 0.98 | | | N ₂ O Emissions from Wastewater Handling | N_2O | 12.71 | 13.94 | < 0.01 | 0.98 | | | Non-CO ₂ Emissions from Stationary Combustion | N_2O | 12.52 | 13.22 | < 0.01 | 0.99 | | | CO ₂ Emissions from Lime Production | $\widetilde{\text{CO}_2}$ | 11.24 | 12.80 | < 0.01 | 0.99 | | | PFC Emissions from Aluminum Production | PFCs | 18.11 | 11.81 | < 0.01 | 0.99 | | | CO ₂ Emissions from Natural Gas Flaring | CO_2 | 5.51 | 8.73 | < 0.01 | 0.99 | | | Non-CO ₂ Emissions from Stationary Combustion | CH_4 | 8.14 | 8.53 | < 0.01 | 0.99 | | | CH ₄ Emissions from Rice Production | CH_4 | 7.12 | 7.62 | < 0.01 | 0.99 | | | CO ₂ Emissions from Limestone and Dolomite Use | CO_2 | 5.47 | 7.04 | < 0.01 | 0.99 | | | PFC, HFC, and SF ₆ Emissions from Semiconduct | _ | 2.86 | 5.90 | < 0.01 | 0.99 | | | Manufacture | - | | | | | | | SF ₆ Emissions from Magnesium Production | SF ₆ | 5.37 | 5.57 | < 0.01 | 1.00 | | | TOTAL | | 6,139.64 | 6,514.90 | 1.00 | | |--|--------------------------|----------|----------|--------|------| | CH ₄ Emissions from Silicon Carbide Production | CH_4 | 0.03 | 0.02 | < 0.01 | 1.00 | | Mobile Combustion: Marine | CH_4 | 0.07 | 0.09 | < 0.01 | 1.00 | | Mobile Combustion: Aviation | CH_4 | 0.16 | 0.15 | < 0.01 | 1.00 | | N ₂ O Emissions from Waste Incineration | N_2O | 0.29 | 0.28 | < 0.01 | 1.00 | | Geothermal Energy | | | | | | | CO ₂ Emissions from Stationary Combustion | $-CO_2$ | 0.40 | 0.37 | < 0.01 | 1.00 | | N ₂ O Emissions from Agricultural Residue Burning | N_2O | 0.37 | 0.38 | < 0.01 | 1.00 | | Mobile Combustion: Marine | N_2O | 0.36 | 0.46 | < 0.01 | 1.00 | | CH ₄ Emissions from Agricultural Residue Burning | CH_4 | 0.68 | 0.66 | < 0.01 | 1.00 | | CO ₂ Emissions from CO ₂ Consumption | CO_2 | 0.90 | 1.09 | < 0.01 | 1.00 | | CH ₄ Emissions from Petrochemical Production | CH_4 | 1.17 | 1.51 | < 0.01 | 1.00 | | Mobile Combustion: Aviation | N_2O | 1.71 | 1.67 | < 0.01 | 1.00 | | CO ₂ Emissions from Titanium Dioxide Production | CO_2 | 1.31 | 1.67 | < 0.01 | 1.00 | | CO ₂ Emissions from Ferroalloys | CO_2 | 1.98 | 1.87 | < 0.01 | 1.00 | | Consumption | | | | | | | | indCO_2 | 4.14 | 4.30 | < 0.01 | 1.00 | | N ₂ O Emissions from N ₂ O Product Usage | N_2O | 4.30 | 4.48 | < 0.01 | 1.00 | | Mobile Combustion: Road & Other | CH_4 | 4.73 | 4.64 | < 0.01 | 1.00 | | CO ₂ Emissions from Aluminum Production | CO_2 | 6.31 | 5.27 | < 0.01 | 1.00 | Note: Sinks (e.g., LUCF, Landfill Carbon Storage) are not included in this analysis.